

FACULTY OF AGRICULTURAL SCIENCES AND ALLIED INDUSTRIES

Hybrids, Synthetics and Composites

Types of hybrids

Hybrids are the first generation from crosses between two pure lines, inbreds, open pollinated varieties of other populations that are genetically not similar.

Pure line hybrids: Tomato. Inbred hybrids: Maize, bajra.

Types of hybrids

- 1. Single cross hybrids: AxB Crossing two inbreeds or pure lines.
- 2. Three way cross hybrid: (A x B) x C A cross between a single cross hybrid and an inbred.
- 3. Double cross hybrid (A x B) x (C x D): cross between two F_1 s.
- 4. Double Top Cross hybrid: Double Cross hybrid crossed with open pollinated variety.

Ways to produce hybrids:

In production of hybrids inbreds are preferred rather than open pollinated varieties for the following reasons.

- 1. Inbreds can be maintained without a change in the genotype. Whereas open pollinated variety cannot be maintained pure. They may alter genotypically due to natural selection etc.
- 2. The hybrids derived from inbreds will be uniform where as it may not be in case, of open pollinated variety.
- 3. The inbreds are homogenous and their performance can be predicted where as open pollinated variety are heterogenous and their prediction in performance cannot be made.

Development of inbreds

- 1. By inbreeding, selfing etc.
- 2. Development of inbreds from haploids rice, sorghum, maize.

Evaluation of inbreds

- a) Phenotypic evaluation Based on phenotypic performance. Highly suitable for characters with high heritability.
- b) Top cross test Top cross test provides a reliable estimate of GCA. The selected inbreds will be crossed to a tester parent with wide genetic base i.e. open pollinated variety. The cross progenies will be evaluated in replicated progeny rows. Based on results better inbreds can be selected.
- c) Single cross evaluation: The developed inbreds can be crossed and the single crosses can be estimated in replicated trial. Outstanding hybrids tested over years in different locations, then released.

d) Prediction of double cross performance 'The predicted performance of any double cross is the average performance of the four non parental single crosses involving the four parental inbreds".

Inbreds: A, B, C, D.

6 possible single crosses = A x B, A x C, A x D, B x C, B x D, C x D.

From these 3 double crosses produced = $(A \times B) \times (C \times D) (A \times C) \times (B \times D) (A \times D) \times (B \times C)$ The performance of these anyone double cross can be predicted from performance of the four single crosses not involved in producing that particular hybrid.

(A x B) x (C x D) A x C A x D

ВхС

 $B \times D$

Average

Production of Hybrids

Methods

- I. Hand emasculation and dusting Cotton, Tomato, Chillies, Bhendi
- 2. Use of male sterile lines
- a) Cytoplasmic male sterility ornamentals
- b) Genic male sterility Redgram, Castor.
- c) Cytoplasmic genic male sterility Jowar, Bajra, Rice
- 3. Use of self in compatibility By planning cross compatible lines hybrids are produced. Here both are hybrids. E.g. Brassicas.

Success of hybrids

- a) Easy hand emasculation
- b) Abundant seed set to compensate cost of hand emasculation.
- c) Stable male sterile lines.
- d) Effective restorers.
- e) Effective pollen dispersal.

Synthetic Varieties

A synthetic variety is produced by crossing in all combinations a number of inbreds (4-6) that combine well with each other. The inbreds are tested for their GCA. Once synthesised, a synthetic is maintained by open pollination. The lines that make up a synthetic may be usually inbred line but open pollinated variety, or other population tested for general

combining ability are also be used. Synthetic varieties are common in grasses, clover, maize and sugar beets. The normal procedure is equal amounts of seeds from parental lines (Syno) is mixed and planted in isolation. Open pollination is allowed. The progeny obtained is Synl. This is distributed as synthetic variety or it may be grown in isolation for one more season and Syn2 is distributed.

Merits

- 1. Less costly compared to hybrids.
- 2. Farmer can maintain his synthetic variety for more seasons which is not possible in hybrids.
- 3. Because of wider genetic base the synthetics are more stable over years and environments.
- 4. Seed production is more skilled operation in hybrids where as it is not so in synthetics.

Demerits

- 1. Performance is little bit lower compared to hybrids because synthetics exploit only GCA while hybrids exploit both GCA and SCA.
- 2. The performance may not be good when lines having low GCA are used.

Composites

It is produced by mixing seeds of phenotypically outstanding lines and encouraging open pollination to produce crosses in all possible combinations among mixed lines. The lines used to produce a composite are rarely tested for combining' ability. So the yield of composite varieties cannot be predicted easily. Like synthetics, composites are commercial varieties and are maintained by open pollination. Composites were released in maize - Amber, Jawahar, Kissan.

A comparison between synthetic and composite:

Synthetic

- Parental components are generally inbreds tested for their GCA
- No of parental lines are limited to 4 6 inbreds
- Synthetic produced with inbreds can be reconstituted
- Yield performance can be predicted

Composite

- It is not so in composite. The lines are not tested for their GCA.
- No such limit
- It is not possible
- Cannot be predicted

Poly Cross Test

This is done to estimate the GCA in crops where production of inbred is not possible. This is followed generally in grasses. Poly cross test is based on seeds obtained by random mating among the clones. Each clone is planted at different date to facilitate random mating. Polycrosses are generally not perfect since mating may not be at random.

Combining ability

Ability of a strain to produce superior progeny when crossed with other strains. It is of two types:

- 1. **General combining ability:** Average performance of a strain in a series of cross combinations. The GCA is estimated from the performance of F1 S from the crosses. The tester will have a broad genetic base.
- 2. **Specific combining ability:** Deviation in performance of a cross combination from that predicted on the basis of general combining ability of the parents involved in the cross. The testing will be on inbred.